Journal tags: selectors

7

Who knows?

I love it when I come across some bit of CSS I’ve never heard of before.

Take this article on the text-emphasis property.

“The what property?”, I hear you ask. That was my reaction too. But look, it’s totally a thing.

Or take this article by David Bushell called CSS Button Styles You Might Not Know.

Sure enough, halfway through the article David starts talking about styling the button in an input type="file” using the ::file-selector-button pseudo-element:

All modern browsers support it. I had no idea myself until recently.

He’s right!

Then I remembered that I’ve got a file upload input in the form I use for posting my notes here on adactio.com (in case I want to add a photo). I immediately opened up my style sheet, eager to use this new-to-me bit of CSS.

I found the bit where I style buttons and this is the selector I saw:

button,
input[type="submit"],
::file-selector-button

Huh. I guess I did know about that pseudo-element after all. Clearly the knowledge exited my brain shortly afterwards.

There’s that tautological cryptic saying, “You don’t know what you don’t know.” But I don’t even know what I do know!

Progressive disclosure defaults

When I wrote about my time in Amsterdam last week, I mentioned the task that the students were given:

They’re given a PDF inheritance-tax form and told to convert it for the web.

Rich had a question about that:

I’m curious to know if they had the opportunity to optimise the user experience of the form for an online environment, eg. splitting it up into a sequence of questions, using progressive disclosure, branching based on inputs, etc?

The answer is yes, very much so. Progressive disclosure was a very clear opportunity for enhancement.

You know the kind of paper form where it says “If you answered no to this, then skip ahead to that”? On the web, we can do the skipping automatically. Or to put it another way, we can display a section of the form only when the user has ticked the appropriate box.

This is a classic example of progressive disclosure:

information is revealed when it becomes relevant to the current task.

But what should the mechanism be?

This is an interaction design pattern so JavaScript seems the best choice. JavaScript is for behaviour.

On the other hand, you can do this in CSS using the :checked pseudo-class. And the principle of least power suggests using the least powerful language suitable for a given task.

I’m torn on this. I’m not sure if there’s a correct answer. I’d probably lean towards JavaScript just because it’s then possible to dynamically update ARIA attributes like aria-expanded—very handy in combination with aria-controls. But using CSS also seems perfectly reasonable to me.

It was interesting to see which students went down the JavaScript route and which ones used CSS.

It used to be that using the :checked pseudo-class involved an adjacent sibling selector, like this:

input.disclosure-switch:checked ~ .disclosure-content {
  display: block;
}

That meant your markup had to follow a specific pattern where the elements needed to be siblings:

<div class="disclosure-container">
  <input type="checkbox" class="disclosure-switch">
  <div class="disclosure-content">
  ...
  </div>
</div>

But none of the students were doing that. They were all using :has(). That meant that their selector could be much more robust. Even if the nesting of their markup changes, the CSS will still work. Something like this:

.disclosure-container:has(.disclosure-switch:checked) .disclosure-content

That will target the .disclosure-content element anywhere inside the same .disclosure-container that has the .disclosure-switch. Much better! (Ignore these class names by the way—I’m just making them up to illustrate the idea.)

But just about every student ended up with something like this in their style sheets:

.disclosure-content {
  display: none;
}
.disclosure-container:has(.disclosure-switch:checked) .disclosure-content {
  display: block;
}

That gets my spidey-senses tingling. It doesn’t smell right to me. Here’s why…

The simpler selector is doing the more destructive action: hiding content. There’s a reliance on the more complex selector to display content.

If a browser understands the first ruleset but not the second, that content will be hidden by default.

I know that :has() is very well supported now, but this still makes me nervous. I feel that the more risky action (hiding content) should belong to the more complex selector.

Thanks to the :not() selector, you can reverse the logic of the progressive disclosure:

.disclosure-content {
  display: block;
}
.disclosure-container:not(:has(.disclosure-switch:checked)) .disclosure-content {
  display: none;
}

Now if a browser understands the first ruleset, but not the second, it’s not so bad. The content remains visible.

When I was explaining this way of thinking to the students, I used an analogy.

Suppose you’re building a physical product that uses electricity. What should happen if there’s a power cut? Like, if you’ve got a building with electric doors, what should happen when the power is cut off? Should the doors be locked by default? Or is it safer to default to unlocked doors?

It’s a bit of a tortured analogy, but it’s one I’ve used in the past when talking about JavaScript on the web. I like to think about JavaScript as being like electricity…

Take an existing product, like say, a toothbrush. Now imagine what you can do when you turbo-charge it with electricity: an electric toothbrush!

But also consider what happens when the electricity fails. Instead of the product becoming useless you want it to revert back to being a regular old toothbrush.

That’s the same mindset I’m encouraging for the progressive disclosure pattern. Make sure that the default state is safe. Then enhance.

aria-live

I wrote a little something recently about using ARIA attributes as selectors in CSS. For me, one of the advantages is that because ARIA attributes are generally added via JavaScript, the corresponding CSS rules won’t kick in if something goes wrong with the JavaScript:

Generally, ARIA attributes—like aria-hidden—are added by JavaScript at runtime (rather than being hard-coded in the HTML).

But there’s one instance where I actually put the ARIA attribute directly in the HTML that gets sent from the server: aria-live.

If you’re not familiar with it, aria-live is extremely useful if you’ve got any dynamic updates on your page—via Ajax, for example. Let’s say you’ve got a bit of your site where filtered results will show up. Slap an aria-live attribute on there with a value of “polite”:

<div aria-live="polite">
...dynamic content gets inserted here
</div>

You could instead provide a value of “assertive”, but you almost certainly don’t want to do that—it can be quite rude.

Anyway, on the face it, this looks like exactly the kind of ARIA attribute that should be added with JavaScript. After all, if there’s no JavaScript, there’ll be no dynamic updates.

But I picked up a handy lesson from Ire’s excellent post on using aria-live:

Assistive technology will initially scan the document for instances of the aria-live attribute and keep track of elements that include it. This means that, if we want to notify users of a change within an element, we need to include the attribute in the original markup.

Good to know!

ARIA in CSS

Sara tweeted something recently that resonated with me:

Also, Pro Tip: Using ARIA attributes as CSS hooks ensures your component will only look (and/or function) properly if said attributes are used in the HTML, which, in turn, ensures that they will always be added (otherwise, the component will obv. be broken)

Yes! I didn’t mention it when I wrote about accessible interactions but this is my preferred way of hooking up CSS and JavaScript interactions. Here’s old Codepen where you can see it in action:

[aria-hidden='true'] {
  display: none;
}

In order for the functionality to work for everyone—screen reader users or not—I have to make sure that I’m toggling the value of aria-hidden in my JavaScript.

There’s another advantage to this technique. Generally, ARIA attributes—like aria-hidden—are added by JavaScript at runtime (rather than being hard-coded in the HTML). If something goes wrong with the JavaScript, the aria-hidden value isn’t set to “true”, which means that the CSS never kicks in. So the default state is for content to be displayed. There’s no assumption that the JavaScript has to work in order for the CSS to make sense.

It’s almost as though accessibility and progressive enhancement are connected somehow…

Programming CSS

There’s a worrying tendency for “real” programmers look down their noses at CSS. It’s just a declarative language, they point out, not a fully-featured programming language. Heck, it isn’t even a scripting language.

That may be true, but that doesn’t mean that CSS isn’t powerful. It’s just powerful in different ways to traditional languages.

Take CSS selectors, for example. At the most basic level, they work like conditional statments. Here’s a standard if statement:

if (condition) {
// code here
}

The condition needs to evaluate to true in order for the code in the curly braces to be executed. Sound familiar?

condition {
// styles here
}

That’s a very simple mapping, but what if the conditional statement is more complicated?

if (condition1 && condition2) {
// code here
}

Well, that’s what the decendant selector does:

condition1 condition2 {
// styles here
}

In fact, we can get even more specific than that by using the child combinator, the sibling combinator, and the adjacent sibling combinator:

  • condition1 > condition2
  • condition1 ~ condition2
  • condition2 + condition2

AND is just one part of Boolean logic. There’s also OR:

if (condition1 || condition2) {
// code here
}

In CSS, we use commas:

condition1, condition2 {
// styles here
}

We’ve even got the :not() pseudo-class to complete the set of Boolean possibilities. Once you add quantity queries into the mix, made possible by :nth-child and its ilk, CSS starts to look Turing complete. I’ve seen people build state machines using the adjacent sibling combinator and the :checked pseudo-class.

Anyway, my point here is that CSS selectors are really powerful. And yet, quite often we deliberately choose not to use that power. The entire raison d’être for OOCSS, BEM, and Smacss is to deliberately limit the power of selectors, restricting them to class selectors only.

On the face of it, this might seem like an odd choice. After all, we wouldn’t deliberately limit ourselves to a subset of a programming language, would we?

We would and we do. That’s what templating languages are for. Whether it’s PHP’s Smarty or Twig, or JavaScript’s Mustache, Nunjucks, or Handlebars, they all work by providing a deliberately small subset of features. Some pride themselves on being logic-less. If you find yourself trying to do something that the templating language doesn’t provide, that’s a good sign that you shouldn’t be trying to do it in the template at all; it should be in the controller.

So templating languages exist to enforce simplicity and ensure that the complexity happens somewhere else. It’s a similar story with BEM et al. If you find you can’t select something in the CSS, that’s a sign that you probably need to add another class name to the HTML. The complexity is confined to the markup in order to keep the CSS more straightforward, modular, and maintainable.

But let’s not forget that that’s a choice. It’s not that CSS in inherently incapable of executing complex conditions. Quite the opposite. It’s precisely because CSS selectors (and the cascade) are so powerful that we choose to put guard rails in place.

An nth-letter selector in CSS

Variable fonts are a very exciting and powerful new addition to the toolbox of web design. They was very much at the centre of discussion at this year’s Ampersand conference.

A lot of the demonstrations of the power of variable fonts are showing how it can be used to make letter-by-letter adjustments. The Ampersand website itself does this with the logo. See also: the brilliant demos by Mandy. It’s getting to the point where logotypes can be sculpted and adjusted just-so using CSS and raw text—no images required.

I find this to be thrilling, but there’s a fly in the ointment. In order to style something in CSS, you need a selector to target it. If you’re going to style individual letters, you need to wrap each one in an HTML element so that you can then select it in CSS.

For the Ampersand logo, we had to wrap each letter in a span (and then, becuase that might cause each letter to be read out individually instead of all of them as a single word, we applied some ARIA shenanigans to the containing element). There’s even a JavaScript library—Splitting.js—that will do this for you.

But if the whole point of using HTML is that the content is accessible, copyable, and pastable, isn’t a bit of a shame that we then compromise the markup—and the accessibility—by wrapping individual letters in presentational tags?

What if there were an ::nth-letter selector in CSS?

There’s some prior art here. We’ve already got ::first-letter (and now the initial-letter property or whatever it ends up being called). If we can target the first letter in a piece of text, why not the second, or third, or nth?

It raises some questions. What constitutes a letter? Would it be better if we talked about ::first-character, ::initial-character, ::nth-character, and so on?

Even then, there are some tricksy things to figure out. What’s the third character in this piece of markup?

<p>AB<span>CD</span>EF</p>

Is it “C”, becuase that’s the third character regardless of nesting? Or is it “E”, becuase techically that’s the third character token that’s a direct child of the parent element?

I imagine that implementing ::nth-letter (or ::nth-character) would be quite complex so there would probably be very little appetite for it from browser makers. But it doesn’t seem as problematic as some selectors we’ve already got.

Take ::first-line, for example. That violates one of the biggest issues in adding new CSS selectors: it’s a selector that depends on layout.

Think about it. The browser has to first calculate how many characters are in the first line of an element (like, say, a paragraph). Having figured that out, the browser can then apply the styles declared in the ::first-line selector. But those styles may involve font sizing updates that changes the number of characters in the first line. Paradox!

(Technically, only a subset of CSS of properties can be applied to ::first-line, but that subset includes font-size so the paradox remains.)

I checked to see if ::first-line was included in one of my favourite documents: Incomplete List of Mistakes in the Design of CSS. It isn’t.

So compared to the logic-bending paradoxes of ::first-line, an ::nth-letter selector would be relatively straightforward. But that in itself isn’t a good enough reason for it to exist. As the CSS Working Group FAQs say:

The fact that we’ve made one mistake isn’t an argument for repeating the mistake.

A new selector needs to solve specific use cases. I would argue that all the letter-by-letter uses of variable fonts that we’re seeing demonstrate the use cases, and the number of these examples is only going to increase. The very fact that JavaScript libraries exist to solve this problem shows that there’s a need here (and we’ve seen the pattern of common JavaScript use-cases ending up in CSS before—rollovers, animation, etc.).

Now, I know that browser makers would like us to figure out how proposed CSS features should work by polyfilling a solution with Houdini. But would that work for a selector? I don’t know much about Houdini so I asked Una. She pointed me to a proposal by Greg and Tab for a full-on parser in Houdini. But that’s a loooong way off. Until then, we must petition our case to the browser gods.

This is not a new suggestion.

Anne Van Kesteren proposed ::nth-letter way back in 2003:

While I’m talking about CSS, I would also like to have ::nth-line(n), ::nth-letter(n) and ::nth-word(n), any thoughts?

Trent called for ::nth-letter in January 2011:

I think this would be the ideal solution from a web designer’s perspective. No javascript would be required, and 100% of the styling would be handled right where it should be—in the CSS.

Chris repeated the call in October of 2011:

Of all of these “new” selectors, ::nth-letter is likely the most useful.

In 2012, Bram linked to a blog post (now unavailable) from Adobe indicating that they were working on ::nth-letter for Webkit. That was the last anyone’s seen of this elusive pseudo-element.

In 2013, Chris (again) included ::nth-letter in his wishlist for CSS. So say we all.

Between the braces

In a post called Side Effects in CSS that he wrote a while back, Philip Walton talks about different kinds of challenges in writing CSS:

There are two types of problems in CSS: cosmetic problems and architectural problems.

The cosmetic problems are solved by making something look the way you want it to. The architectural problems are trickier because they have more long-term effects—maintainability, modularity, encapsulation; all that tricky stuff. Philip goes on to say:

If I had to choose between hiring an amazing designer who could replicate even the most complicated visual challenges easily in code and someone who understood the nuances of predictable and maintainable CSS, I’d choose the latter in a heartbeat.

This resonates with something I noticed a while back while I was doing some code reviews. Most of the time when I’m analysing CSS and trying to figure out how “good” it is—and I know that’s very subjective—I’m concerned with what’s on the outside of the curly braces.

selector {
    property: value;
}

The stuff inside the curly braces—the properties and values—that’s where the cosmetic problems get solved. It’s also the stuff that you can look up; I certainly don’t try to store all possible CSS properties and values in my head. It’s also easy to evaluate: Does it make the thing look like you want it to look? Yes? Good. It works.

The stuff outside the curly braces—the selectors—that’s harder to judge. It needs to be evaluated with lots of “what ifs”: What if this selects something you didn’t intend to? What if the markup changes? What if someone else writes some CSS that negates this?

I find it fascinating that most of the innovation in CSS from the browser makers and standards bodies arrives in the form of new properties and values—flexbox, grid, shapes, viewport units, and so on. Meanwhile there’s a whole other world of problems to be solved outside the curly braces. There’s not much that the browser makers or standards bodies can do to help us there. I think that’s why most of the really interesting ideas and thoughts around CSS in recent years have focused on that challenge.